SIMULTANEOUS SPATIAL OF POVERTY AND HDI USING GS2SLS
DOI:
https://doi.org/10.33758/mbi.v17i12.441Keywords:
2SLS, GS2SLS, HDI, Poverty, SDGsAbstract
The SDGs program encourages change towards sustainable development which makes poverty alleviation the main goal. Poverty is a person's inability to meet the minimum standard of living that hinders the welfare of an individual. The benchmark for welfare is the Human Development Index (HDI). It is suspected that there are spatial influences between regions because, in terms of territoriality, the province of East Java has similarities in the value of the percentage of poor people and HDI in nearby areas. Poverty and HDI and vice versa have a relationship that affects each other, so modeling is done with a system of simultaneous similarities. This work used a queen contiguity weight matrix and the Generalized Spatial Two Stage Least Squares (GS2SLS) approach to analyze spatial simultaneous equations. This method can cope with autocorrelation and heteroskedasticity. The data used are the percentage of poor people and HDI as well as variables from previous studies that are thought to significantly affect poverty and HDI in 38 Regencies/Cities of East Java in 2019. The results showed that there was a negative reciprocal relationship between the percentage of poor people and HDI. The spatial effect is positive and significant on the HDI variables with GS2SLS Spatial Autoregressive (SAR) modeling, while the percentage of poor people without spatial effects is so modeled with Two Stage Least Square (2SLS). HDI and GRDP growth rates significantly affect the percentage of poor people, while HDI is significantly influenced by the percentage of poor people and population density.
References
Badan Pusat Statistik of East Java. 2020. East Java Province in Numbers, BPS of East Java.
Sustainable Development Goals 2021. What is SDGs, SDGs. https://www.sdg2030indonesia.org/page/8-apa-itu, accessed: December 28th, 2021.
Kuncoro, M. 2000. Ekonomi Pembangunan: Teori, Masalah dan Kebijakan, UPP AMP YKPN.
Saleh, S. 2002. Ekonomi Pembangunan Faktor-Faktor Penentu Tingkat Kemiskinan Regional Di Indonesia. Jurnal Ekonomi Pembangunan. Vol. 7, Issue 2.
Pratama, Y. C. 2014. Analisis Faktor-Faktor Yang Mempengaruhi Kemiskinan Di Indonesia. Bisnis Dan Manajemen, 4(2).
Widodo, A., Waridin, and Maria, J. 2011. Analisis Pengaruh Pengeluaran Pemerintah Di Sektor Pendidikan Dan Kesehatan Terhadap Pengentasan Kemiskinan Melalui Peningkatan Pembangunan Manusia Di Provinsi Jawa Tengah, Dinamika Ekonomi Pembangunan, 1(1).
Zuhdiyati, N., and Kaluge, D. 2017. "Analisis Faktor-Faktor Yang Mempengaruhi Kemiskinan Di Indonesia Selama Lima Tahun Terakhir (Case Studies in 33 Provinces).
Rohmah, R. N. 2017. Analisis Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Di Provinsi Jawa Tengah Tahun 2012-2014.
Trunajaya, I. P. 2015. Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Di Seluruh Provinsi Indonesia. Institut Pertanian Bogor.
Sofilda, E., Hamzah, M. Z., and Sholeh, S. 2013. Human Development And Poverty In Papua Province (An Analysis Of Simultaneous Approach On Panel Data Regression), OIDA International Journal of Suistainable Development, 6(6).
Gujarati, D. 2015. Econometrics by example, Palgrave. 2nd Ed.
Anselin, L. 1988b. Spatial Econometrics: Methods and Models, Kluwer Academic, 1st Ed., Vol 4.
Rosa, M., Maiyastri, M., and Yozza, H. 2021. Pemodelan Indeks Pembangunan Manusia Menggunakan Analisis Regresi Spasial Di Provinsi Jawa Timur, Jurnal Matematika UNAND, 9(4), 347. https://doi.org/10.25077/jmu.9.4.347-356.2020.
Laswinia, V. D. 2016. Pattern Analysis of Relationship Analysis Between Low-Lived Population Percentage and Environmental , Economic , and Social Factors in Indonesia Using Spatial Regression, Institut Teknologi Sepuluh Nopember.
Kelejian, H. H., and Prucha, I. R. 1998. A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, Journal of Real Estate Finance and Economics, Vol. 17.
Kelejian, H. H., and Prucha, I. R. 2004. Estimation of simultaneous systems of spatially interrelated cross sectional equations, Journal of Econometrics, 118(1–2), 27–50. https://doi.org/10.1016/S0304-4076(03)00133-7.
Kelejian, H. H., and Prucha, I. R. 1999. A Generalized Moments Estimator For The Autoregressive Parameter In A Spatial Model, International Economic Review, Vol. 40, Issue 2.
Gujarati, D. N. 2004. Basic econometrics, McGraw Hill.
Minister of Manpower Regulation No: Per-01/Men/1999
Setiawan and Kusrini, D. E. 2010. Econometrika, ANDI.
Hausman, J. A. 1978. Specification Tests in Econometrics, The Econometrics Society, 46(6), 1251–1271.
Cliff, A., and Ord, J. 1981. Spatial Processes, Models and Applications, Pion.
Anselin, L. 1988a. A Test For Spatial Autocorrelation In Seemingly Unrelated Regressions, In Economics Letters, Vol 28.
Burridge, P. 1980. On the Cliff-Ord test for spatial correlation, Journal of the Royal Statistical Society, 42, 107–108.
Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. 1996. Simple diagnostic tests for spatial dependence, Regional Science and Urban Economics, 26(1), 77–104. https://doi.org/10.1016/0166-0462(95)02111-6.
Montgomery, D. C., Peck, E. A., and Vining, G. G. 2012. Introduction To Linear Regression Analysis, Wiley. 5th Ed.
Greene, W. H. 2018. Econometric Analysis, Pearson.. 8th Ed.
Tomsik, R. 2019. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov and Jarque-Bera Test, Scholars Scitech Research Organization, 3(3).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nur Jihan Salsabiila Nur Jihan Salsabiila, Dwi Endah Kusrini Dwi Endah Kusrini, Nur Azizah Nur Azizah, Destri Susilaningrum Destri Susilaningrum
This work is licensed under a Creative Commons Attribution 4.0 International License.