PENGGUNAAN PERSONAL BRANDING TERHADAP MINAT SEWA BUS PARIWISATA

Authors

  • Ade Sumardi Sekolah Tinggi Ilmu Manajemen dan Informatika LIKMI
  • Antonius Alijoyo Universitas Parahyangan

Keywords:

personal branding, Bisnis, pariwisata

Abstract

Artikel ini akan membahas mengenai dampak penggunaan personal branding pada minat sewa bus pariwisata. Tidak dapat dinafikan bahwa saat ini dunia pariwisata pasca pandemic covid-19 kembali bergairah dan mendapat animo yang besar dari masyarakat. Sekait dengan itu, maka sektor pariwisata yang semakin diminati masyarakat mendatangkan banyak manfaat bagi pengusaha, termasuk penyedia jasa layanan bus pariwisata. Untuk menarik konsumen, maka penyedia jasa layanan bus perlu menerapkan personal branding, agar jasa mereka dapat dipilih oleh masyarakat. Penggunaan personal branding juga diperlukan untuk meningkatkan nilai pasar mereka di masyarakat. Adapun penelitian ini dilakukan dengan metode kualitatif. Hasil penelitian mennunjukan bahwa penggunaan personal branding memiliki dampak yang positif terhadap penyedia jasa layanan bus pariwisata, yakni meningkatkan omset, membuat merek semakin dikenal, dan menjadi pilihan masyarakat dalam melakukan pariwisata

References

G. A. Sambodo, “Aksara dan angka jawa kuna,” 2020.

A. Morbekar, A. Parihar, and R. Jadhav, “Crop disease detection using YOLO,” 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 1–5, 2020, doi: 10.1109/INCET49848.2020.9153986.

K. R. B. Legaspi, N. W. S. Sison, and J. F. Villaverde, “Detection and Classification of Whiteflies and Fruit Flies Using YOLO,” 2021 13th Int. Conf. Comput. Autom. Eng. ICCAE 2021, pp. 1–4, 2021, doi: 10.1109/ICCAE51876.2021.9426129.

M. Hammami, D. Friboulet, and R. Kechichian, “Cycle GAN-Based Data Augmentation for Multi-Organ Detection in CT Images Via Yolo,” Proc. - Int. Conf. Image Process. ICIP, vol. 2020-Octob, pp. 390–393, 2020, doi: 10.1109/ICIP40778.2020.9191127.

P. Kannadaguli, “YOLO v4 Based Human Detection System Using Aerial Thermal Imaging for UAV Based Surveillance Applications,” 2020 Int. Conf. Decis. Aid Sci. Appl. DASA 2020, pp. 1213–1219, 2020, doi: 10.1109/DASA51403.2020.9317198.

R. Santoso, Y. K. Suprapto, and E. M. Yuniarno, “Kawi Character Recognition on Copper Inscription Using YOLO Object Detection,” CENIM 2020 - Proceeding Int. Conf. Comput. Eng. Network, Intell. Multimed. 2020, no. Cenim 2020, pp. 343–348, 2020, doi: 10.1109/CENIM51130.2020.9297873.

R. Laroca et al., “A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector,” Proc. Int. Jt. Conf. Neural Networks, vol. 2018-July, 2018, doi: 10.1109/IJCNN.2018.848962

T. Linder, K. Y. Pfeiffer, N. Vaskevicius, R. Schirmer, and K. O. Arras, “Accurate detection and 3D localization of humans using a novel YOLO-based RGB-D fusion approach and synthetic training data,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 1000–1006, 2020, doi: 10.1109/ICRA40945.2020.9196899.

S. Degadwala, D. Vyas, U. Chakraborty, A. R. Dider, and H. Biswas, “Yolo-v4 Deep Learning Model for Medical Face Mask Detection,” Proc. - Int. Conf. Artif. Intell. Smart Syst. ICAIS 2021, pp. 209–213, 2021, doi: 10.1109/ICAIS50930.2021.9395857.

A. Ramanath, S. Muthusrinivasan, Y. Xie, S. Shekhar, and B. Ramachandra, “Ndvi versus cnn features in deep learning for land cover classification of aerial images,” Int. Geosci. Remote Sens. Symp., vol. 2019-July, pp. 6483–6486, 2019, doi: 10.1109/IGARSS.2019.8900165.

W. Jian and L. Lang, “Face mask detection based on Transfer learning and PP-YOLO,” 2021 IEEE 2nd Int. Conf. Big Data, Artif. Intell. Internet Things Eng. ICBAIE 2021, no. Icbaie, pp. 106–109, 2021, doi: 10.1109/ICBAIE52039.2021.9389953

D. Sadykova, D. Pernebayeva, M. Bagheri, and A. James, “IN-YOLO: Real-Time Detection of Outdoor High Voltage Insulators Using UAV Imaging,” IEEE Trans. Power Deliv., vol. 35, no. 3, pp. 1599–1601, 2020, doi: 10.1109/TPWRD.2019.2944741.

S. Thaiparnit, N. Chumuang, and M. Ketcham, “A Comparitive Study of Clasification Liver Dysfunction with Machine Learning,” 2018 Int. Jt. Symp. Artif. Intell. Nat. Lang. Process. iSAI-NLP 2018 - Proc., vol. 283, pp. 1–4, 2018, doi: 10.1109/iSAI-NLP.2018.8692808.

L. Kang, I. Wang, K. Chou, and S. Chen, “Image-based Real-Time Fire Detection Using Deep Learning with Data Augmentation for Vision-based Surveillance Applications,” 2019 16th IEEE Int. Conf. Adv. Video Signal Based Surveill., pp. 1–4, 2018.

Y. Xiong, Q. Chen, M. Zhu, Y. Zhang, and K. Huang, “ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING School of Geography and Tourism , Jiaying University , Meizhou 514015 , China ; Department of Geography and Environment , University of Hawaiʻi at Mānoa , Honol,” pp. 1586–1589, 2020.

Downloads

Published

2024-01-31

Issue

Section

Articles